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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 11
Solutions by T. Bunn and J. Barber

Reading:
105 Notes 14.1-14.5
Hand & Finch 2.9, 9.7

1.
Discuss the motion of a continuous string (ten-
sion τ , mass per unit length µ) with fixed end-
points y = 0 at x = 0 and x = L, when the
initial conditions are

y(x, 0) = A sin
3πx
L

ẏ(x, 0) = 0 .

Resolve the solution into normal modes.
Solution:
A general solution to this problem can be written
as:

y(x, t) =
∞∑

n=1

(An sinωnt+Bn cosωnt) sin
nπx

L

where ωn = nω1 and ω1 = π
L

√
τ
µ . From our

initial conditions, we have:

y(x, 0) =
∞∑

n=1

Bn sin
nπx

L

= A sin
3πx
L

Thus, by inspection, B3 = A, and all the other
Bn are zero. We also have the initial condition
for velocity:

ẏ(x, 0) =
∞∑

n=1

ωnAn sin
nπx

L

= 0

Thus all the An are zero. So the full solution is:

y(x, t) = A cosω3t sin
3πx
L

where ω3 = 3π
L

√
τ
µ .

2.
Discuss the motion of a continuous string (ten-
sion τ , mass per unit length µ) with fixed end-
points y = 0 at x = 0 and x = L, when (in a
certain set of units) the initial conditions are

y(x, 0) = 4
x(L− x)
L2

ẏ(x, 0) = 0 .

Find the characteristic frequencies and calculate
the amplitude of the nth mode.
Solution:
Again using the expansion

y(x, t) =
∞∑

n=1

(An sinωnt+Bn cosωnt) sin
nπx

L
,

we fit the initial conditions:

ẏ(x, 0) =
∞∑

n=1

ωnAn sin
nπx

L

= 0

Thus all the An are zero.

y(x, 0) =
∞∑

n=1

Bn sin
nπx

L

=
4x(L− x)

L2

where

Bn =
2
L

∫ L

0

4x(L− x)
L2

sin
nπx

L
dx
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Here are two useful integrals:

∫ L

0

x sin
(nπx
L

)
dx = (−1)n+1 L

2

nπ∫ L

0

x2 sin
(nπx
L

)
dx =

{
L3

nπ − 4L3

n3π3 n odd
−L3

nπ n even

So the amplitude of the nth mode is

Bn =
{

32/n3π3 if n is odd
0 if n is even

with characteristic frequencies given, as usual,
by ωn = nπ

L

√
τ
µ .

3.
Solve for the motion y(x, t) of a continuous string
(tension τ , mass per unit length µ) with fixed
endpoints y = 0 at x = 0 and x = L, when the
initial conditions are

y(x, 0) = A sin
πx

L

ẏ(x, 0) = V sin
5πx
L

,

where A and V are constants.
Solution:
Using the same expansion for the solution as in
1. and 2., we apply the initial conditions:

y(x, 0) =
∞∑

n=1

Bn sin
nπx

L

= A sin
πx

L
,

from which we can see that B1 = A and all the
other Bn are zero. We also have:

ẏ(x, 0) =
∞∑

n=1

ωnAn sin
nπx

L

= V sin
5πx
L

By inspection, A5 = V
ω5

, and all the other An

are zero. Thus the solution is

y(x, t) =
V

ω5
sinω5t sin

5πx
L

+A cosω1t sin
πx

L
,

where as usual ωn = nπ
L

√
τ
µ .

4.
A continuous string (tension τ , mass per unit
length µ) is attached to fixed supports infinitely
far away. At t = 0 the string satisfies initial
conditions

y(x, 0) = 0
∂y

∂t
(x, 0) = α δ(x) ,

where δ(x) is a Dirac delta function and α is a
constant that can be made arbitrarily infinites-
imal, so that the string’s slope remains small
enough for the usual wave equation to apply.
This initial condition is appropriate to the string
having been struck at (x = 0, t = 0) with a sharp
object.

Compute y(x, t) for t > 0.
Solution:
From Notes eqn. 14.5, we have:

y(x, t) =
1
2
(
y0(x− ct) + y0(x+ ct)

)
+

1
2c

∫ x+ct

x−ct

v0(u) du

=
1
2
(0 + 0) +

1
2c

∫ x+ct

x−ct

α δ(u) du

The integral is α
2c if the interval (x − ct, x + ct)

contains 0, zero otherwise. Therefore:

y(x, t) =
{

α
2c if −ct < x < ct

0 otherwise

(Here c ≡
√

τ
µ .)

5.
Show that if ψ and ψ∗ are taken as two indepen-
dent field variables, the Lagrangian density

L′ =
h̄2

2m
∇ψ∗ · ∇ψ + V ψ∗ψ +

h̄

2i
(ψ∗ψ̇ − ψψ̇∗)

(where ˙ means ∂/∂t in this context) leads to the
Schrödinger equation

− h̄2

2m
∇2ψ + V ψ = ih̄

∂ψ

∂t
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and its complex conjugate.
Solution:
The above expression for the Lagrangian can be
written as:

L′ =
h̄2

2m
(∂jψ

∗)(∂jψ) + V ψ∗ψ +
h̄

2i
(ψ∗ψ̇ − ψψ̇∗)

where we are using the summation convention,
and ∂j ≡ ∂

∂xj
. Our Euler-Lagrange equation

looks like:

d

dt

(
∂L
∂ψ̇

)
+

d

dxk

(
∂L

∂(∂kψ)

)
=
∂L
∂ψ

where

d

dt

(
∂L
∂ψ̇

)
=
h̄

2i
ψ̇∗

d

dxk

(
∂L

∂ (∂kψ)

)
=
h̄2

2m
d

dxk
(∂kψ

∗) =
h̄2

2m
∇2ψ∗

∂L
∂ψ

= V ψ∗ − h̄

2i
ψ̇∗

Putting all these into the Euler-Lagrange for-
mula, we get

h̄

2i
ψ̇∗ +

h̄2

2m
∇2ψ∗ = V ψ∗ − h̄

2i
ψ̇∗

Rearrange that to get

− h̄2

2m
∇2ψ∗ + V ψ∗ = −ih̄ψ̇∗

which is the complex conjugate of the usual
Schrödinger equation. If you apply the Euler-
Lagrange equation for ψ∗, you’ll get the uncon-
jugated Schrödinger equation.

6.
Consider a membrane stretched between fixed
supports at x = 0, x = L, y = 0, and y = L. Per
unit area, its kinetic and potential energies are

T ′ = 1
2σ

(∂z
∂t

)2

U ′ = 1
2β

((∂z
∂x

)2 +
(∂z
∂y

)2
)
,

where σ is the membrane’s mass per unit area,
β is a constant that is inversely proportional to
its elasticity, and z is its (normal) displacement.

Apply the Euler-Lagrange equations to obtain a
partial differential equation for z(x, y, t). Using
a trial solution

z(x, y, t) = X(x)Y (y)T (t) ,

find the angular frequencies of vibration for the
five lowest-frequency normal modes of oscilla-
tion.
Solution:
Our Lagrangian is

L′ =
1
2
σ

(
∂z

∂t

)2

− 1
2
β

((
∂z

∂x

)2

+
(
∂z

∂y

)2
)

Apply the Euler-Lagrange equation:

d

dx

∂L′

∂ ∂z
∂x

+
d

dy

∂L′

∂ ∂z
∂y

+
d

dt

∂L′

∂ ∂z
∂t

=
∂L′

∂z

− d

dx

(
β
∂z

∂x

)
− d

dy

(
β
∂z

∂y

)
+
d

dt

(
σ
∂z

∂t

)
= 0

∂2z

∂x2
+
∂2z

∂y2
− 1
c2
∂2z

∂t2
= 0 ,

where c ≡
√

β
σ . Substituting in a solution of

the form z(z, y, t) = X(x)Y (y)T (t) and dividing
through by z yields:

X
′′

X
+
Y

′′

Y
− 1
c2
T

′′

T
= 0

By the usual separation of variables reasoning,
each term must be separately equal to a con-
stant. Therefore we try a solution of the form

X(x) ∝ sin
nπx

L

Y (y) ∝ sin
mπx

L

T (t) ∝ eiωt

where n and m are positive integers. Note that
the coefficients of x are chosen to satisfy the
boundary conditions X(0) = X(L) = Y (0) =



4

Y (L) = 0. In order to still satisfy the separated
D.E., we must have

−
(nπ
L

)2

−
(mπ
L

)2

+
ω2

c2
= 0

ω2 =
c2π2

L2
(n2 +m2)

and so the frequencies of the five lowest fre-
quency modes are given by:

ω2 =
c2π2

L2




12 + 12 = 2
12 + 22 = 5
22 + 12 = 5
22 + 22 = 8
32 + 12 = 10
12 + 32 = 10
22 + 32 = 13
32 + 22 = 13

7. and 8. (double problem)
The Lagrangian density (per unit volume) for
a charge density ρ(r, t) and current density
j(r, t) in the presence of an electromagnetic field
E(r, t), B(r, t) is

L′ =
E2 −B2

8π
− ρφ+

1
c
j ·A .

The first term is the Lagrangian density corre-
sponding to the self-energy of the free field, and
the latter terms represent the interaction be-
tween fields and charges. The self-energy of the
individual (point) charges is infinity in classical
theory and is omitted. In the above, A is the
vector potential defined by

B = ∇×A

E = −∇φ− 1
c

∂A
∂t

(Gaussian units are used throughout this prob-
lem). If you are familiar with relativistic trans-
formations of electromagnetic fields, you may no-
tice that the above Lagrangian density is Lorentz
invariant, although not manifestly so.

The homogeneous (charge and current indepen-
dent) Maxwell equations follow directly from the
equations relating E and B to the potentials.

To complete the picture, using φ and the three
components of A as four generalized (field) co-
ordinates, apply the Euler-Lagrange equations
to L′ to obtain the two inhomogeneous Maxwell
equations

∇ ·E = 4πρ

∇×B− 1
c

∂E
∂t

=
4π
c
j .

Solution:
Remember the repeated-index summation con-
vention; we’ll be using it a lot. The ith compo-
nent of the electric field is Ei = −(∂iφ + Ȧi/c).
So E2 is

E2 = EiEi = (∂iφ+ Ȧi)(∂iφ+ Ȧi) ,

and B2 is

B2 = (∇× (A)2 = (∇× (A)i(∇× (A)i

= εijk(∂jAk)εilm(∂lAm) .

So the Lagrangian density is

L =
1
8π

(
∂iφ+

1
c
Ȧi

) (
∂iφ+

1
c
Ȧi

)

− 1
8π
εijkεilm(∂jAk)(∂lAm) − ρφ+

1
c
jiAi .

The Euler-Lagrange equation for a coordinate η
is

d

dt

(
∂L
∂η̇

)
+

d

dxa

(
∂L

∂ (∂aη)

)
− ∂L
∂η

= 0

(Note that there is an implied sum over a in the
second term.) We have four coordinates: φ and
the three components of (A. Let’s start by set-
ting η = φ. Then the first term is zero, and the
third term is ∂L/∂φ = −ρ. To figure out the
second term, note that ∂aφ occurs in the La-
grangian density only in the first term, and only
when i = a. So

∂L
∂ (∂aφ)

=
1
4π

(
∂aφ+

1
c
Ȧa

)
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Putting all of this into the Euler-Lagrange equa-
tion, we get

1
4π

d

dxa

(
∂aφ+

1
c
Ȧa

)
+ ρ = 0

The first term is just −(1/4π)dEa/dxa, which is
−∇ · (E/4π, so this equation is

∇ · (E = 4πρ

Now let’s choose as our coordinate an arbitrary
component of the vector potential: η = Ab.
Then

d

dt

(
∂L
∂Ȧb

)
=

1
4πc

d

dt

(
∂bφ+

1
c
Ȧb

)

= − 1
4πc

dEb

dt

and

d

dxa

(
∂L

∂ (∂aAb)

)

= − 1
8π

d

dxa
(εiabεilm∂lAm + εijkεiab∂jAk)

= − 1
4π
εiabεilm∂a∂lAm

and
∂L
∂Ab

=
jb
c

The second expression above requires some ex-
planation. The term in the Lagrangian density
that involves spatial derivatives of (A has no
fewer than five implied summations: i, j, k, l,m
are all summed over. The derivative with re-
spect to ∂aAb gets nonzero contributions when
(j, k) = (a, b) and when (l,m) = (a, b). Those
are the two terms in the second line of the second
expression above. Those two terms are equal, as
you can see by relabeling the remaining dummy
indices. (Specifically, relabel j, k to be l,m in
the second term.)

So the Euler-Lagrange equation is

− 1
4πc

dEb

dt
− 1

4π
εiabεilm∂a∂lAm − jb

c
= 0

But

εiabεilm∂a∂lAm = εiab∂a

(
∇× (A

)
i

= −εbai∂aBi

= −
(
∇× (B

)
b

So the Euler-Lagrange equation for Ab becomes

1
c

dEb

dt
−

(
∇× (B

)
b
+

jb
4πc

= 0

which is just the b component of the second
Maxwell equation.


